小編整理: 攝動是指天體在繞另一個天體運動時,由于受到其他天體的引力或其他因素的影響,使其軌道產生的偏差。這種作用相對于中心天體的引力來說很小,因此稱為攝動。攝動會使天體的坐標、速度或軌道要素產生變化,這種變化成分稱為攝動項。在GPS測量中,衛(wèi)星的軌道也會受到地球引力場、太陽輻射壓力、月球和太陽引力等攝動因素的影響,因此需要考慮到這些因素對衛(wèi)星位置和時間的影響,以確保GPS測量的準確性。
攝動 一個天體繞另一個天體按二體問題的規(guī)律運動時,因受別的天體的吸引或其他因素的影響,在軌道上產生的偏差,這些作用與中心體的引力相比是很小的,因此稱為攝動。天體在攝動作用下,其坐標、速度或軌道要素都產生變化,這種變化成分稱為攝動項。他根據 常數變易法 ,利用拉格朗日括號,嚴格地導出了描述橢圓軌道要素變化的攝動方程── 拉格朗日方程 。
發(fā)展 攝動理論的發(fā)展,至今已有二百多年的歷史。 歐拉 、拉格朗日、 高斯 、泊松和 拉普拉斯 等許多著名的 學者都為它的發(fā)展作過不少貢獻,先后提出過的攝動方法不下百種。歸納起來,大致可分三類:坐標攝動法、瞬時橢圓法和正則變換。有些方法不能明確地列入哪一類,例如著名的漢森方法就兼有一、二兩類的特性。
坐標攝法 研究天體在真實軌道上的坐標和在 中間軌道 上的坐標之差,這個差值稱為 坐標攝動 。在經典方法中,常把坐標攝動表示為某個小參量(例如攝動行星 的質量)的冪級數,然后逐項進行計算。由于計算技術的發(fā)展,微分方程近似解法中皮卡迭代法正逐步代替原來的小參量冪級數展開方法。它的主要優(yōu)點是有統(tǒng)一的迭代過程,使計算過程能高度自動化。按所取坐標系的不同,坐標攝動又分為下述幾種方法。
直角坐標 這是1858年恩克在研究彗星的運動時提出的,它討論坐標攝動在 直角坐標系 中的表示式,經常用于計算 短周期彗星 和月球火箭的軌道。這種方法的優(yōu)點是:攝動方程的推導簡單,形式對稱,可以直接得到坐標,便于計算天體的歷表。它的缺點是:以直角坐標表示的攝動量難于顯示出攝動的幾何特性和力學含義;隨著時間跨度的增長,直接坐標的三個攝動量往往同時變大,以致不能把它們所服從的方程作線性化處理,否則就要多次更換零點。
球坐標 自然天體一般總是圍繞著某個主 天體運動 ,例如行星繞著 太陽運動 ,衛(wèi)星繞著行星運動。因此,球坐標或極坐標的攝動就有較明顯的幾何意義??巳R洛和拉普拉斯在研究彗星的運動和 大行星運動理論 時最早提出了球坐標攝動方法。后來, 紐康 對拉普拉斯方法作了改進,特別是在展開攝動函數時運用了算符運算,使展開過程不僅有簡潔的數學表示式,而且有規(guī)則的處理過程,便于以后在電子計算機上進行計算。紐康成功地運用這個方法研究了 水星 、 金星 、地球、火星四顆內行星以及 天王星 、 海王星 的運動,據此編成的內行星的歷表,一直是二十世紀以來編算天文年歷的基礎。希爾提出了一種以 真近點角 為引數的球坐標攝動法,它曾被成功地用于計算第一號小行星── 谷神星 的攝動。
其他坐標 1963年穆森提出了另一種計算坐標攝動的方法,用于計算 天體坐標 在 向徑 、速度和角動量三個方向上的攝動量。盡管這樣的分解不正交,但由于它有不少優(yōu)點,如有較明顯的力學意義,推導方便,積分直接、運用算符運算、各階攝動方程具有統(tǒng)一而緊湊的形式,并便于計算自動化,現正用于建立新的 大行星運動理論。 在各種坐標攝動的研究中,幾乎都以橢圓作為中間軌道。希爾在研究 月球運動理論 時用了所謂二均軌道作為中間軌道,這是一種計及太陽攝動主要部分的 周期軌道 ,它避開了月球在 近地點 時進動快所帶來的困難。吉爾當曾提出用轉動橢圓作為中間軌道,以便消除坐標攝動中的長期項,并將攝動表示為真近點角的三角級數。他的理論曾一度引起人們普遍關心,但后來的研究證明,這種方法是不收斂的。 瞬時橢圓
這是以軌道要素作為基本變量的攝動方法。如果行星只受太陽的吸引,正如 開普勒定律 所描述的,它將沿著一個固定的橢圓運動,決定橢圓運動的六個軌道要素應是常數。若考慮到其他因素的影響,行星將偏離原來的橢圓,六個軌道要素就不再是常數,它們將遵循由常數變易法導出的規(guī)律而變化。在這種情況下,可得到一組橢圓,它們逐個地與真實軌道相切,在相切點,二者不僅有相同的坐標,而且有相同的速度;只是加速度彼此不同,一個是真實加速度,另一個是橢圓加速度,二者之差正是攝動力引起的攝動加速度。由于這種攝動加速度的作用,天體在下一時刻將離開這個橢圓,走上鄰近的一個瞬時橢圓;相反,一旦攝動作用消失,天體將沿著消失點的瞬時橢圓一直運動下去。天體在太陽輻射壓攝動下的運動正是這樣:當 輻射壓 起作用時,天體的瞬時橢圓不斷變化;但當天體進入一個陽光照不到的陰影區(qū)時,輻射壓消失,天體就沿著入影點的瞬時橢圓運動下去,直到跑出這個影子為止。 天體的真實軌道就是瞬時橢圓族的 包絡線 。與坐標攝動相比,橢圓軌道要素的變化一般要緩慢得多,因而便于處理。瞬時橢圓法最早是歐拉在十八世紀中葉研究 木星 與 土星 的相互攝動時提出的,后由拉格朗日加以改進。他根據常數變易法,利用拉格朗日括號,嚴格地導出了描述橢圓軌道要素變化的攝動方程──拉格朗日方程。這種方法的應用十分廣泛,特別是被 勒威耶 成功地用來研究大行星的運動。 正則變換
這是一種以 分析力學 為基礎的方法。其基本思想是:對變量進行一系列適當的正則變換,以求降低運動方程的階次,使新的方程具有較簡單的形式,例如得出一個描述等速直線運動或 簡諧振動 的方程,從而使問題得解。十九世紀,德洛內從這個觀點出發(fā)建立了著名的德洛內月球運動理論。他首先將月球的攝動函數展開成四百多個三角項,然后進行一系列的正則變換,使每次變換都能消去其中的一項。他花了差不多二十年的時間,總共進行了上千次變換,找到了三個合適的 角速度 ,將月球的軌道要素都表示成時間的 三角多項式 ,而不包含任何長期項。德洛內的工作為天體力學中的變換理論奠定了基礎。這種方法是由一系列形式統(tǒng)一的循環(huán)過程組成的,因此非常便于用電子計算機進行計算。 德洛內之所以要進行那樣多的變換,是為了對攝動函數中的每一項都給以嚴格的數學處理。這在實用上是沒有必要的,某些高階項盡可以略去。以這種想法為指導,蔡佩爾在二十世紀初建立了蔡佩爾變換。他先把攝動函數中的角變量按它們變化快慢排隊,然后在一定精度范圍內尋找適當的變換,以便一次消去所有含快變量的項,得出一組平均化的方程,進而對新的方程重復類似的過程,直至消去全部角變量為止。與德洛內方法相比,這種方法的工作量小得多,因此,它一出現就被成功地用來研究小行星的運動。人造衛(wèi)星上天后,它得到了更廣泛的應用。但是,蔡佩爾變換也有一些缺點,其中最突出的 是:決定新舊變量轉換關系的母函數是混合型的,同時含有新舊兩種變量,使用頗為不便。為了克服這一缺點, 堀源一郎 在二十世紀六十年代提出了一種以李變換為基礎的理論──堀源-李變換。其優(yōu)點是:不僅新舊變量之間的變換具有 顯函數 的形式,同時其結果在正則變換之下保持不變,因此它與用哪一組正則變量進行計算無關,而具有通用性。
攝動理論研究現況 電子計算機的創(chuàng)制和發(fā)展不僅大大提高數值計算的精度和速度,而且代替人們完成大量機械的重復的推導,今天已廣泛用于攝動理論研究。近年來,德普里特、亨拉德、羅姆利用電子計算機編制了一個分析月球歷表。單就計算太陽主要攝動項而言,攝動函數就有近3,000項,并通過李變換,得到了近50,000項月球坐標表示式。其規(guī)模之大,遠非德洛內理論所能相比。
影響天體運動的攝動因素多種多樣:有 萬有引力 引起的 保守力 ,有介質阻尼引起的 耗散力 ,有連續(xù)作用的力,也有諸如輻射壓引起的間斷力等。影響大行星運動的主要攝動因素是行星間的相互吸引;地球大氣的阻尼使衛(wèi)星隕落于地面;太陽輻射壓決定著 彗尾 的形狀;潮汐摩擦則是衛(wèi)星軌道演化的主要動力。只有準確地掌握了各種攝動因素,才能準確無誤地計算天體的運動,解釋各種壯麗的天象。反之,通過精密的觀測和準確掌握天體的運動規(guī)律,就可以根據攝動理論的分析,弄清天體周圍的力學環(huán)境,如測定攝動天體的質量、 主天體 的力學扁率和 彈性模量 、大氣密度和各種 引力場參數等等,甚至還能預告一些未知天體的存在與行跡 。因此,攝動理論不僅有豐富的理論內容,也有較高的實用價值。